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Lecture 12 – Statistical models of shape and appearance
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Today's Learning Objectives
 Describe the concept of shape models
 Define the shape of an object using landmarks
 Describe point correspondence
 Describe and use the vector representation of a shape
 Describe how a shape can be seen as a point in high-dimensional space
 Explain how shapes can be aligned 
 Describe how principal component analysis can be used to model shape 

variation
 Explain the similarity between Eigenfaces and shape and appearance 

models
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A typical scenario
 Doctor X believes that he can “see” on a 

hand X-ray if the patient is in risk of 
arthritis!

 Specifically Doctor X is sure that the 
shape of the joints is an estimator for 
arthritis!

Can we verify that?
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Scenario II
 MR images have been captured of a 

large group of people
 Cognitive abilities measured as well
 Is there a correlation between how the 

brain looks and how we behave?
 Does the shape of corpus callosum tell 

us something?

Corpus Callosum
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Scenario II
 We can get the MR slice with the corpus 

callosum from all the patients
Corpus Callosum
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Scenario III
 An experienced hearing aid fitter has 

seen a lot of ears!
 Some hearing aid users are very difficult 

to fit. Why?
 Large variation in the shape of ears
 Ear canals change shape when people 

chews
 Is it possible to learn about the shape 

and use it?
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Shape Analysis
 What can we learn from shape?
 What can we use it for?
 How do we do it?

600 MR scans and 
behavioural data

1000 historical X-rays

A boxful of something 
that look like ear canals

A set of hand 
photographs
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What is shape?
 How do we define the shape of 

this hand?
 What is the shape difference 

between the two hands?
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Shape definition
 Shape is defined using landmarks

– Placed by an expert
 In this case the outer contour of 

the hand
 Just one of many ways!
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Shape definition
Shape is all geometrical information that remains when 

location, scale, and rotational effects are removed
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Shape definition
Shape is all geometrical information that remains when 

location, scale, and rotational effects are removed
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Landmarks and point correspondence
Landmarks are placed on the same place on all shapes 

in the training set
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Shape as a vector
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Shapes in high-dimensional space
 One hand is now described using 

one vector
 A vector can also be seen as a 

point in space!

Trick number 
two!
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Coordinates in space
 On hand is now described using one 

vector
 A vector can also be seen as a 

coordinate in space!
 Not 2D space, not 3D space, not 4D 

space…
 112 Dimensional Space!
 A hand has a position in this space!

112 Dimensional Space!
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Hands in Space
 A hand has a position in space!
 Another hand appears 

– in the same space
– different position = different shape

 All hands have a place in this space!

112 Dimensional Space!

x3

x4



DTU Compute

Image Analysis19 DTU Compute, Technical University of Denmark

Shape Analysis
 Shape analysis

– Similar shapes are placed on “planes” in the 
shape-space

– Also called a manifold

112 Dimensional Space!

x3

x4
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Shape alignment

 40 training images of hands
 56 landmarks on each
 Placed in random location (translation+rotation)
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Shape alignment 
Before alignment

Landmarks from all hands

Needs alignment!
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What is alignment?
 Group wise registration

– Not one-to-one
– All to the average shape

Average shape

But hey! We do not have an 
average shape?
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Procrustes Analysis (alignment)
 We start by defining

– Average shape = Shape #1
 Align shape #2 to shape 

#1
 Align all shapes to shape 

#1“Average shape”

Registration

Registration Registration

Registration

Shape #2
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Landmark based registration
 Shape #2 is transformed 

to fit the average shape
– Translation
– Rotation
– Scaling
– = Similarity Transform

 Result
– Shape #2 is placed on top of 

the average shape

“Average shape”

Registration

Shape #2
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Procrustes Analysis
1. Average shape is set to shape #1
2. Register all shapes to the average shape

– Landmark based registration
3. Recompute the average shape
4. If average shape changed return

to step 2.
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Aligned shapes – what now
 Individual landmark variation

– Over the training set
 What shape is the variation?

Shape #16 Shape #27
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Principal Component Analysis (PCA)
 PCA 

– Main axis in data 
– Eigenvectors
– Eigenvalues

 Size of Eigenvalues describe 
explained variance

height

weight
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Principal Component Analysis (PCA)
 We throw away the noise 

dimensions
 Points projected to the line

height

weight
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Principal Component Analysis (PCA)
 We throw away the noise 

dimensions
 Points projected to the line
 A point can now be described by 

one parameter t
 We have reduced the number of 

dimensions
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How many dimensions should we keep?
 Plot the Eigenvalues
 Explains how important each 

dimension is
 Cut away noise dimensions

Noise dimensions



DTU Compute

Image Analysis32 DTU Compute, Technical University of Denmark

Aligned shapes – what now
 Individual landmark variation

– Over the training set
 What shape is the variation?

Shape #16 Shape #27
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PCA Analysis
 PCA analysis on individual 

landmarks
 Describes the major direction of 

variation
 Landmarks are correlated!
 The movement over the shape is 

connected
 Return to shape space

Landmark #14 Landmark #22
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PCA in shape space
 Instead of doing PCA on 2D points we 

do it on 112D points
 Examine if our 40 shapes is lying on a 

plane in 112D space
 We find the directions that spans the 

maximum variation in shape space

112 Dimensional Space!

x3

x4
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Start by computing the shape average

Since we do this on the aligned shapes – 
this is the Procrustes average
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Do the eigenvector analysis
 Computing the covariance of the 

shape data

Shape number i in the training set

Average shape
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Visualizing variation

Average shape

Visualizing the first principal component
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Results of Shape Analysis
 Visualisation of the major variation of the shape over a population
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Hearing Aid Design
 Main variation of the shape of the ear canal
 Found using principal component analysis
 First mode of variation
 7 modes explain 95% of the total variation

Average-1. mode Average+1. modeAverage
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Modelling shape and appearance
 A model that can both model the shape of an object and the 

appearance (the texture)
 Texture: The pattern of intensities (or colors) across an image patch
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Back to lecture 3: Eigenfaces
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Face data
 38 face images

– 168 x 192 grayscale
 Aligned

– The anatomy is placed ”in the 
same position in all image”

 Same illumination conditions 
on the images we use

The Extended Yale Face Database B
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Analyzing the deviation from the mean face
 We want to do the principal component analysis 

on the deviations from the average face
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Visualizing the PCA faces
Main deviations from the average face

First PC – 40% of variation

Second PC – 8% of variation

Average face-PC +PC

A tool to see major variations – 
brow lifting
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Eigenfaces: Modelling texture
 The modelling of the pure appearance 
 Without removing variation in shape
 No decoupling of shape and appearance
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Decoupling shape and texture
 Warp each face to average 

shape using the landmarks
 Non-linear geometrical 

transformation
 Sample the texture from 

the warped face



DTU Compute

Image Analysis48 DTU Compute, Technical University of Denmark

Eigenfaces on warped faces
 Same PCA modelling as 

in the Eigenfaces 
approach

 Just slightly different 
notation
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Combined shape and appearance model
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Facial Analysis
 Demo of AAM explorer
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